我认为,在所有这些人工智能趋势中,现在一个好事是,很多模型都是开源的,这也是我们在 SAM 上所具备的能力。OpenVINO 也是开源的,开发人员可以非常轻松访问此工具套件。每天,我们将多个 AI 趋势放入 OpenVINO Notebooks 存储库中,AI 领域会发生一些事情,两到三天后,那里就有我们的笔记本。对于开发人员来说,有一个好消息:我们已经在 OpenVINO 存储库中为 SAM 提供了优化管道。
我认为,OpenVINO 是降低构建深度学习应用复杂性的好工具。如果您拥有 AI 专业知识,那么这里是一个很好的地方,您可以详细了解 AI 趋势,以及了解 OpenVINO 如何改善您的日常工作。但如果您是新开发人员,或者如果您是开发人员,但并非 AI 专家,这也是一个很好的起点,因为您可以看到我们提供的示例,并且可以跟进 Jupyter Notebooks 中的每个单元格。
对于许多零售商来说,自动化和自助服务技术出现已经迫在眉睫。在员工短缺、客户要求苛刻以及利润空间受通胀挤压的压力下,他们转而向 SI 寻求提高效率的方法, BlueStar, Inc. 的业务 开发经理 David Lester(一家面向零售商、制造商、物流公司和其他行业提供技术解决方案的全球供应商)表示。
该公司开发各种专门技术,以提高零售行业效率并改善客户体验。BlueStar 与 SI 密切合作,为从快餐店到商场、酒店、杂货店和精品店的零售业务提供了 30 种独特的“盒式”(In-a-Box)解决方案。Lester 表示,这些即用型捆绑软件包含有 SI 部署所需的所有硬件、软件和配件,可最大限度减少决策,缩短设置时间。
随着边缘 AI 能力提升,BlueStar 正在扩大其解决方案的应用范围。例如,它目前正在开发与服装技术公司 FIT:MATCH 的集成,后者利用激光雷达和 AI 捕捉顾客体形的 3D 图像,并将其与数据库中的数字孪生相匹配。然后,该系统就可以针对产品和尺寸提出个性化建议。收听我们的播客: 个性化 AI 购物体验:在 insight.tech 上使用 FIT:MATCH。
与英特尔合作,帮助 BlueStar 跟上此类创新应用的步伐。“英特尔在我们的工作中发挥着重要作用,特别是我们的盒式解决方案,” Lester 指出。“英特尔给予我们极大的帮助,让我们得以了解 AI 解决方案,并尽可能以经济高效的方式进行部署。”
虽然某些新的 AI 应用听起来可能极具未来感,Lester 相信它们将不断改进。“我每个月都能发现人工智能的进步。我认为语音 AI 和数字标牌将发展到更直观的状态,从而提高上下文理解,提供更加个性化的体验和更好的客户参与度。”
这样的结果为其他医院提供了重新思考患者监护并实现近乎实时、以患者为中心的 AI 愿景的途径。医疗行业领先者已证明,通过增加虚拟人员来重返以团队为基础的护理工作,有助于扭转人员配备危机。“这并不是要将护士从患者身旁夺走,而是接受某些任务并集中进行处理,” Rusin 表示。“在可预见的未来,护士、医生和呼吸治疗师的数量永远无法满足所有需求。我们需要让床旁团队回归床旁护理。灵活的虚拟护理支持使这一点成为现实。”
制造商面临着巨大的压力,必须利用所有可用的智能功能,如机器视觉和 AI 驱动的视频分析等技术。这些都是实现从缺陷检测和预防到工人安全等一切事项的关键工具。但很少有制造商是 AI 领域的专家,要掌握的东西很多,要处理的事情也很多,更不用说要为未来的重大技术投资做好准备。这些新技术需要具有适应性和互操作性。
虽然在我们的领域,我们一直对产品质量保持特别关注,但正如 Aji 刚才提到的,人不会消失。我认为这恰恰说明了人们对 AI 的一个普遍误解,即 AI 会取代人类,夺走工作岗位。我们在产品质量方面看到的情况实际上恰恰相反:通过将视觉系统和软件工具引入工厂,我们使工厂能够更快地检验零件。现在,他们能够生产更多的产品,这意味着公司能够雇佣更多的员工来生产更多的零件。
但是,面对重新设计和重新认证医疗设备的时间和成本,原始设备制造商在没有极具引人注目的商业案例的情况下,对过渡到支持 AI 的下一代平台犹豫不决。如果无法回答一个系统设计将保持多久的相关性,那么这个商业案例就变得不那么引人注目了。
英特尔新推出的酷睿超移动处理器,是第一个集成 NPU 的 x86 处理器,也是当今市场上能效最高的 SoC 产品家族之一。集成的 NPU 支持高级 AI 工作负载,而不会增加独立加速器的成本和复杂性。结合 SoC 领先的每瓦特性能,医疗设备设计人员可以在资源有限的边缘 AI 部署中更好地管理功耗和热效率。
Congatec 的产品线经理 Maximilian Gerstl 指出:“在移动超声设备和其他电池供电系统中,处理器的每瓦性能也非常有趣。”“英特尔对架构所做的工作令人印象深刻。这些数字从性能来看非常出色,不仅在 CPU 方面,而且在显卡方面也是如此。新处理器还为客户提供了前所未有的灵活性,允许他们在保持相同外形的情况下跨多代升级系统。”
最新的 congatec conga-TC700 COM Express 紧凑型模块将英特尔酷睿超移动处理器的处理性能和应用就绪的 AI 功能集成在即插即用的外形中。医疗设备设计人员可以利用该模块作为构建高效的边缘 AI 系统的捷径,同时显著缩短上市时间并降低总拥有成本 (TCO)。由于 COM Express 是由全球技术联盟 PICMG 管理的开放式硬件标准,TC700 提供了与供应商无关的系统升级路径,通过该路径,可以简单地将遗留模块替换为具有相同接口的性能更高的模块。
在多个行业中执行工作场所安全规程的经历至关重要。“由于 AI 的民主化,几乎任何人都可以访问开源算法并创建视频分析。但将其推广到摄像头不同、照明度不同、期望值也不同的生产环境中,这是最具挑战性的部分,” Anirudhan 指出。“这正是我们的优势所在,我们能够解决不同垂直行业的安全和员工工作效率问题,尤其是在石油天然气、公用事业和制造业。”
在音频领域,快速运行时尤为重要,这是常见的痛点之一。您希望模型超级强大,能够快速生成高质量输出的结果,那就需要大量计算。因此,我想说,优化生成式 AI 模型的技术堆栈绝对至关重要,这也是我在英特尔日常工作中研究的东西。
音频生成式 AI 的具体商机是什么?
使用语音人工智能或对话式人工智能来读取和处理音频,这确实非常有趣,这就是您使用语音代理(例如手机上的语音助手)所做的事情。将其与音频生成式 AI 比较,您实际上是在创建内容,例如,能够生成合成化身或声音,以便打电话和交谈。首先想到的商业应用肯定是呼叫中心,或者是具有使用这种所创建音频的模拟环境的元宇宙应用。
但创意领域、内容创作领域也有一些非传统商业用例,我们开始看到一些应用与音乐生成式 AI 相关。对我来说,这非常令人兴奋。英特尔开始研究生成式 AI 如何补充艺术家的工作流程:例如,创建作品,使用生成式 AI 来采样节奏。音乐家和音乐制作人如何利用生成式人工智能,将其纳入内容创作工作流程之中,这也有一个非常有趣的文化元素。
虽然它不是一个传统的商业用例,比如呼叫中心或使用音频进行零售的交互式自助服务终端,但我认为,音乐生成式 AI 在内容创作方面有着巨大的应用。最终,它还可以进入需要生成声音的其他类型领域,例如,创建用于 AI 系统训练的合成数据。
音频生成式 AI 的开发流程是什么?
生成式 AI 领域目前正在采用几种不同的方式。其中一种肯定是改造已有的模型架构,以用于其他类型的生成式 AI 模型。例如,Riffusion 基于图像生成模型 Stable Diffusion 的架构;它只是生成波形,而不是图像。
我们一直在调查许多有趣的生成式 AI 工作负载,这些工作负载是英特尔 OpenVINO 工具套件和 OpenVINO Notebook 存储库的一部分。我们将许多音频生成的关键示例当作非常有用的用例,用于提示和测试生成式 AI 功能。我们曾经与英特尔的其他团队合作,使用 Riffusion 模型,创作 Taylor Swift 类型的流行节奏,一直到更高级的模型,生成与某人说话的内容相匹配的音频。
我们正在尝试采用英特尔® 酷睿™ Ultra 和类似类型的平台,在 AI 电脑上生成音频,当您坐在房间里与一群音乐家一起制作原型并玩音乐时,理想情况下,您不必访问云端。相反,您可以在本地这样做,将其导出到云端,然后在本地和云端之间往返移动您的工作负载。关键在于,我们如何将利益相关者纳入该流程,即我们如何准确创建生成式 AI 解决方案,将其实例化,然后随时维护?